Co-centralizing generalized derivations acting on multilinear polynomials in prime rings
نویسندگان
چکیده مقاله:
Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ $(=Z(U))$ the extended centroid of $R$. Let $0neq ain R$ and $f(x_1,ldots,x_n)$ a multilinear polynomial over $C$ which is noncentral valued on $R$. Suppose that $G$ and $H$ are two nonzero generalized derivations of $R$ such that $a(H(f(x))f(x)-f(x)G(f(x)))in C$ for all $x=(x_1,ldots,x_n)in R^n$. one of the following holds: $f(x_1,ldots,x_n)^2$ is central valued on $R$ and there exist $b,p,qin U$ such that $H(x)=px+xb$ for all $xin R$, $G(x)=bx+xq$ for all $xin R$ with $a(p-q)in C$; there exist $p,qin U$ such that $H(x)=px+xq$ for all $xin R$, $G(x)=qx$ for all $xin R$ with $ap=0$; $f(x_1,ldots,x_n)^2$ is central valued on $R$ and there exist $qin U$, $lambdain C$ and an outer derivation $g$ of $U$ such that $H(x)=xq+lambda x-g(x)$ for all $xin R$, $G(x)=qx+g(x)$ for all $xin R$, with $ain C$; $R$ satisfies $s_4$ and there exist $b,pin U$ such that $H(x)=px+xb$ for all $xin R$, $G(x)=bx+xp$ for all $xin R$.
منابع مشابه
co-centralizing generalized derivations acting on multilinear polynomials in prime rings
let $r$ be a noncommutative prime ring of characteristic different from $2$, $u$ the utumi quotient ring of $r$, $c$ $(=z(u))$ the extended centroid of $r$. let $0neq ain r$ and $f(x_1,ldots,x_n)$ a multilinear polynomial over $c$ which is noncentral valued on $r$. suppose that $g$ and $h$ are two nonzero generalized derivations of $r$ such that $a(h(f(x))f(x)-f(x)g(f(x)))in ...
متن کاملCentralizing automorphisms and Jordan left derivations on σ-prime rings
Let R be a 2-torsion free σ-prime ring. It is shown here that if U 6⊂ Z(R) is a σ-Lie ideal of R and a, b in R such that aUb = σ(a)Ub = 0, then either a = 0 or b = 0. This result is then applied to study the relationship between the structure of R and certain automorphisms on R. To end this paper, we describe additive maps d : R −→ R such that d(u) = 2ud(u) where u ∈ U, a nonzero σ-square close...
متن کاملGeneralized Derivations of Prime Rings
Let R be an associative prime ring, U a Lie ideal such that u2 ∈ U for all u ∈ U . An additive function F : R→ R is called a generalized derivation if there exists a derivation d : R→ R such that F(xy)= F(x)y + xd(y) holds for all x, y ∈ R. In this paper, we prove that d = 0 or U ⊆ Z(R) if any one of the following conditions holds: (1) d(x) ◦F(y)= 0, (2) [d(x),F(y) = 0], (3) either d(x) ◦ F(y) ...
متن کاملGeneralized Derivations on Prime Near Rings
Let N be a near ring. An additive mapping f : N → N is said to be a right generalized (resp., left generalized) derivation with associated derivation d onN if f(xy) = f(x)y + xd(y) (resp., f(xy) = d(x)y + xf(y)) for all x, y ∈ N. A mapping f : N → N is said to be a generalized derivation with associated derivation d onN iff is both a right generalized and a left generalized derivation with asso...
متن کاملLeft Annihilator of Identities Involving Generalized Derivations in Prime Rings
Let $R$ be a prime ring with its Utumi ring of quotients $U$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...
متن کاملNotes on Generalized Derivations on Lie Ideals in Prime Rings
Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that usH(u)ut = 0 for all u ∈ L, where s ≥ 0, t ≥ 0 are fixed integers. Then H(x) = 0 for all x ∈ R unless char R = 2 and R satisfies S4, the standard identity in four variables. Let R be an associative ring with center Z(R). For x, y ∈ R, the commutator xy− yx will be denoted by [x, y]. An add...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 42 شماره 6
صفحات 1331- 1342
تاریخ انتشار 2016-12-18
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023